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Internal symmetry of the quantized multi-component Majorana fields

P.P. ANDRUSEVICH!, V.M. RED’KOV?

We continue the investigation of the internal symmetry of the multi-component Majorana fields, which
can be associated with one, two, three and four Dirac fields. The case of the classical fields was studied in
the previous paper. According to the definition, internal symmetries should satisfy a number of
requirements: the corresponding transformations must preserve the form of the equation which leads to
the constrains [Q,T",] =0 in a massive case, and to [Q,I",] =0 and [Q,T’,], =0 for massless fields;
the Lagrangian must be invariant under such symmetries, which yields to the constraint Q*nQ =7 ; the
transformations must preserve the Majorana nature of the fields, that means that if ¥, is the real
(imaginary) part of the wave function, then after the transformation ¥/, =Q,;'¥, it remains real
(imaginary). For the quantized fields, the following permutation relations are added as additional
constraints vi.v;l. =)y vl ==y, vl =00 wily;l, =0 We describe  the
structure of symmetry transformations for the cases of 1, 2, 3, and 4 quantized Dirac fields, massive and

massless, specifying them to Majorana case.
Keywords: quantized dirac fields, majorana fields, lagrangian formalism, internal symmetry.

MBbI nposioipkaeM McciIe0BaHue BHYTPEHHEH CHMMETPUM MHOTOKOMIIOHEHTHBIX roJied MalopaHsl, Ko-
TOpBIE MOTYT OBITH CBSI3aHBI C OJHHUM, JIBYMs, TpeMsi M 4eThIpbMs noisiMu Jupaka. Cnywail kinaccude-
CKUX ToJed Obul m3ydeH B mpensiaylneil padore. CorfacHO ONIpeneNieHHIo, BHYTPEHHHE CHMMETPUU
JIOJDKHBI yJIOBJIETBOPSTH Psily TPEOOBAaHWIl: COOTBETCTBYIOMIME MPeoOpa3oBaHUs IOJDKHBI COXPaHSThH
dopmy ypaenenms, sto npuBomut K orpanmuenmaMm [Q,,] =0 B maccoBom ciyuae, a TaKKe K

[QT,] =0 n [Q,[,], =0 nns Ge3mMaccOBBIX MONEH; NarpaHknaH A0IDKEH ObITh HHBAPHAHTHBIM, YTO

MPUBOIHUT K orpannueHnio Q7Q =7 ; mpeobpa3oBaHus He MODKHBI HapylIaTh MalOPaHOBCKUM Xapak-
Tep MoJjeH, T. €. 2TH NpeoOpa3oBaHuUs JOJDKHBI yIOBIETBOPATH ycioBuio: eciu ‘P, — BellecTBeHHas
(MHMMast) gacTh BonHOBOU ¢ymkuuu, o 1 V), = QW — Tarke BeuecTBeHHas (MHUMas) 4acTb. [t
KBAaHTOBAHHBIX TI0JIEH B Ka4eCTBE JOMOJHHUTEIBHBIX OTPaHUICHUH T00aBIAIOTCS CIEAYIONIHE MIePecTaHo-
Bounbte cootnomenus [y, w1, = (), Wiw;l. =-(a)y,  lwiw;l. =0, w.lw;]. =0. Mbl onu-
ChIBa€M CTPYKTYpPY MpeoOpa3oBaHUil CHMMETPUU Ui cay4aeB 1, 2, 3 u 4 xBaHTOBaHHBIX mouiei J{upaka,
MacCUBHBIX M 0€3MacCOBBIX, YTOUHHMB UX JUIS cilydas MaiopaHsl.

KiaioueBble ¢JI0Ba: KBaHTOBaHHBIC JUPAKOBCKHUE TOJIdA, MaﬁOpaHOBCKPIe oJid, JJarpaH>KeB (bOpMaHI/BM,
BHYTPCHHSA CUMMETPUSL.

Introduction. We continue the investigation of the internal symmetry of the multi-component
Majorana fields, which can be associated with one, two, three and four Dirac fields (see in [1], [2]).
The case of the classical fields was studied in the previous paper (see [1], [2] and the list of
reference therein).

In the quantized theory for the Dirac fields, in addition to bispinor variable y they introduce
Dirac conjugate bispinor & =y "y,. The anticommutators for operator variables y and y* take the
form [3]

lvivi'l, =6 lyiwvil, =0.lyi"yi'], =0. 1)

Anticommutators. In these formulas the Dirac matrices y,, are taken as follows
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which can be translated to Majorana form by means of the similarity transformation
0 -1 -1 0 0O 1 i 0
e 11 0 0 1 B ,_1]-1 0 0 i
7=SSTSEE o o0 A STV TG 0 0 @)
0O -i i 0 0O -1 i O

Let us transform anticommutators (1) to Majorana basis. Starting with definitions
v =W, Ve W), v =W v v,
we get v, =y, -y, W, =W —w,, v,=—ly —iy,, v, =—ly, +iy;, further we verify that the
above relations (1) preserve their form for the new components y :
lvivil =65 vyl =lyi vl =0. ©)
Now let us introduce the Dirac conjugate variables in Majorana basis
A AR (R A e 70
and find the commutation relations for the variables v, :
vi.v;l. =)y Wwiv;l ==y viwl =0, [w,w;] =0. 4)
It is evident that these relations are invariant under the choice of basis in bispinor space.

Technical details. Let us elaborate a special method to work with multicomponent columns.
Let A and B be some matrices of dimension nx1. It is convenient to introduce a special operation

over such matrices {A,B'}, = A®B" +B" ® A, where symbol T designates the transposition of
the matrix. This operation has several helpful properties:

{A (B + Bz)T}@ ={A BlT}@ +{A BzT}@’ (5)
{AB'},) =(A®B"+B"®A) =AT®B+B®A" ={B,A'},. (6)
Let x be a certain matrix of dimension nxn, then
{A.(B)'}s ={A B"},X". )
Let the matrices A and B contain two blocks
A= 212, B" =[b] b,

then in accordance with the definitions we derive the identity
{ai ’ |b1T b2T|} — {ailblT}ea {aivsz}® . (8)
a, o &0} {a,b)
One Dirac Quantized Field. Let us consider one Dirac quantized field in Majorana basis

Co,+m¥'=0,T,=1,®y,,¥ =" v (9)

Further we will use the 8-component variable (adopted to quantum field theory) W = (v, ). The

transition from W to W' is reached by means of the unitary transformation

i L, 1, 1 i L, 7 14

V2 Ly 7, v’ |

U= cw=uy=| = (10)

Vo il V2 7
We can identify the variables ¥, " with block variables in the above quantities A, BT . Then we get

{‘P,‘PT}J{‘Q’ 2 zﬂ} _v'e ke

_ o : _ 1 | (11)
vy e lvvle
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According to previous Section, the anticommutation relations (4) hold. Let us specify them for
the quantities from (11). For {w, %"}, , taking in mind (1), we get {w," }, = 7, . Similarly, we find

e =, 7X=0, Ty k=) =) =7
These four relations can be presented in the shorter form as follows

Va4

{lP’LPT}ﬁﬁ :‘ ’ = {\Pa‘"PT}@ =io,®y,; (12)

Vs
it contains four anticommutators in 8-dimensional form.
This formalism can be extended to any number of the Dirac fields. Let n Dirac fields be given

(.0, +my, =0, (r,0,+my, =0, (r,0,+m)y,=0. (13)
For system (13) in Majorana basis, we have 2n-component variable ¥ with the (column) structure
¥ = (y", '), where the column " = (y,,w,,...,w!) is real, and the column ' = (., v3,...,!)
is imaginary. The 2n-component function takes the form ¥ = (y,w) where v = (v,,v,,...,¥,),
v =.v,,....w,) . For this generalized case, the commutative relations are written as follows (the

indices «, f numerate n fields)
Wi Wisl. =0,5(ra)is Wi Wiple = =0, (ra)yy Wiwvisl, =i, wisl. =0. (14)

By analogy with the case of one Dirac equation, we derive

W'Y =1,0y, vl =-1,9y, {w.w'} =0 {7y} =0. (15)
These four relations can be joint into the following one
{¥, ¥}, =ic, ®(1,®7,). (16)

Symmetries for n Dirac field. Let us consider infinitesimal 1-parametric transformation
over the field
Y'=(1+wd)Y, (17)
where J is any generator of internal symmetry. Let us examine the behavior of the anti-
commutative relations under this transformation
We start with the relation

' ¥} =(1+0d)¥YO¥ 1+l )+ (1+0l)®(1+wl)¥; (18)
after transforming the first and the second summands, preserving the terms of the first order in w:
1+ 0d)YQ¥ (1+0d ) =YY + 0¥ Q¥ I + 0¥V,
Y (1+0))QU+0d )Y =¥ Q¥ +0¥ ®I¥Y+0P ') ®VY,
whence for (18), we obtain
{99} ={¥, ¥} +o{¥,(J9) }s +o{¥, (3P} (19)
We should impose the constraint on symmetry generator J @{¥,(J¥)"}, +o{¥",(J¥)}, =0,
whence taking into account (6) we derive
{¥,(09) ) =-{¥,(0¥)' )", (20)
in the following we will call the last as the anti-symmetry condition.

Let us examine the consequences of (20). To this end, let us use the block form of internal
symmetry generator in the basis (v, y)

a b
= d‘, @y
where
a, ... a, b, ... b, Cy, ... C d, ... dj
a=|: i, b=]: L, c=) S, d=] :,
a, a,, b, ... b, Cy --- Cu d, ... d,

the blocks ay, by, ¢;, d; have dimension 4x4. Let us calculate the quantities
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ay + by
cy +diy

7 _ _
{r,(0¥)'}, = ﬂﬁ‘,kaw + ()", (op) + <dw|} .
®
First, let us detail the term {y, (%)} {w, (%)}, =w ® (bw)" + (bw)" ®y ; whence taking in
mind the identity

JVY =

‘,(J ®)' =) + 07, (o) + (07,

Zblil/7i
b =| i |.(bp)" =|Eby7) .. (b))
anil/7i
we obtain
v, {Wli(Zbli'pi)T}ea {l/jl’(anilpi)T}(B
. 07) Y =4| i ||Coi) .. Eh)|p = : : .
4 ® {v., Cbw)'Ye - v, (Ebw) e
Now let us detail the term
{1, E0,7) 3o = v, (0,71) Yo v, (0,7,) Yo+ .+, (B,7,) 3o (22)

by direct calculation we can prove that for each bispinor the identity holds (where x is certain
matrix of dimension 4x4)

{W’(X‘?)T}@ :{W’WT}@ X"
Taking into account the last identity and the property from (22) we derive

{730, ... v Wleby| [l .. 0 by ... By
.07 )= P =] S =y b
{UZ31723 1V (7 7 4 0 .. . 7P, - b,
Similarly, we can derive the identities (where symbol y designates blocks from (21)):
v, (v Yo =W, (W) Yo =lw. ¥ YoV, v, (W)Yo =7, (y)' 3 =0, (23)
Therefore, expression {¥,(JW¥)"}, is transformed to
—T T T
O R e A (24)

Whence we derive yet another identity ({¥,(J¥)'},)" = {¥, ¥}, ") =J{¥,¥'},)" .
Thus, the symmetry requirement for commutative relations (20) can be presented in the form

¥, ¥}, =-J¢¥.¥'})", (25)
which with (16) in mind leads to the restriction on symmetry generator
ic,®(,®y,))" =-Jic,®(,®y,). (26)

It should be noted that having used the property (7), one can present expression (20) in the form (25).
Let us recall that in the basis (y",y') for system (13), the general structure of the symmetry
generators should be as follows

J= I, (27)

c d

where a,b,c,d stand for the blocks of dimension nxn (they differ from blocks in (21)). Let us
translate(27) to the basis (w,), J =UJU ™, with the help of the matrix

_iLen LeL| L L [helL 1,8y

I, ®7, _In®}/4, L ®l, -1,®y,

7z 72

Taking in mind the identities

. (28)
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o[ ®l el ael bell_|@roel, (brd)el,
L,®y, —1,®y/c®l, d®l,| |(a-c)®y, (b-d)®y,|
L =@ 8L bl el 1,87,

@-0)®y, b-d)®y,| (1,81, -1,®y,

we find the structure of the generator J :
a®l, p®y,

o®y, p®I,

J= , (29)

where the notations are used
a=a+b+c+d, fp=a+c-b-d, co=a-c+b-d, p=a-c-b+d. (30)
We substitute this generator (29) into (26); in this way with the use of identities

_ _ 0 I, ® T®l, -0'® - ®l, p'®
IO—2®(In®7/4)‘JT :‘ ' 7 aT ) O‘-I' & = ﬂT ) p'r }/41
1,97 0 -8 ®y, p @l | |-a &y, o ®l,
- &I ® 0 | ® -RI ®
Ji62®(|n®7/4):a 4 ﬁ 74 n 7/4: IB 4 a }/4’
oc®y, p&Il|-1,®y, 0 -p®y, o®l,
we derive
-B®I1, a®y, :_—,BT®I4 P ®y,
-p®y, o®l, —a'®y, o®l,|
Whence we obtain the following restrictions on the blocks «, 3, p,o :
ﬁ:_ﬁTv a:_pT' p:_aT! o-:_JT' (31)

Let us substitute the expression from (30) into (31):
a+c—b-d=-a"-c"+b"+d", a-c+b-d=-a"+c" -b" +d",
a-c—-b+d=-a"-c"-b"'—d", a+c+b+d=-a"+c"+b' -d",
whence it follows
a—d=-a"+d", c-b=-c"+b", a+d=-a"-d", —c-b=-c" -b",

that is
a=-a', d=-d’, c=b". (32)
Therefore, the structure of the symmetry generator in the basis (y",y') should be as follows
! b
J= d®|4+bT ®1,. (33)
With this in mind, for generator J we obtain
_ ®I ®
_|%¥ ﬂT Va . (34)
oc®y, -a ®l,

Thus, we have studied internal symmetries for 1, 2, 3, and 4 Dirac quantized fields. The
needed generators in the basis (i",') may have the structure of two types:

D, A

r

v v
Y y
where the blocks D, are real, and A, are imaginary; the parameters @, and o, are imaginary
(k =1,2). All the generators are Hermitian, which yields

D;=((D,)") =-D/ =D,, A =(A)) =A =A, I=12 (36)
All the transformations with such properties preserve the form of the commutation relations (4).
Expressions (35) and (36) agree with the needed symmetry conditions for classical field.

Thus, we conclude that all symmetry transformations for 1, 2, 3, 4 massive field preserve their
validness in a quantized case.

r

wpdY = wp , 0J,¥Y=0, , (35)

2
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Massless quantized fields. Let us examine invariance properties of the commutation relations
for massless fields. In addition to generators of type (27) in the basis (y",'), in massless case we
have generators with different structure (compare with (27)):

‘®75' (37)

where a,b,c,d stand for the blocks of dimension nxn (they differ from the blocks (21)).

Let us transform relations (37) to basis (), with the help of matrix (28): L =ULU .
Taking into account the identities

UL = ,®1, 1,®1,[a®y, b®y, _ (a+Cc)®y, (b+d)®y, |
[, ®y, —1,®7,[c®y; d®y| |(@-C)®y, s (b-d)®y,1:
ULU- = (a+c)®y, (b+d)®y, ||I,®I, In®;/4’
(@a-c)®y,r; (b-d)®yy||l,®1, -I,®y,
we find the structure of generators L :
o a®ys ﬂ®747/5, (38)
o®yys POYs
where the notations are used
a=a+b+c+d, p=-a-c+b+d, o=a-c+b-d, p=-a+c+b-d. (39)
Substituting (38) — (39) into (26), we get
O, a®y,|_ -f1®1, p' ®y,
-p®y, O'®|4_ -a' ®y, O'®|4’
whence follow the restrictions on the blocks «, g, p,o:
p=pa=-p", p=—a',c=0'". (40)
Substituting (40) into (39), we obtain the system of equations
—a-c+b+d=-a"-c'+b"+d", —a+c+b-d=-a’' -c' -b" -dT,
—a-c-b-d=-a"+c"+b' —d", +a-c+b-d=+a" —c" +b" —d",
whence it follows
a=a', d=d’, c=-b". (41)

Thus, the structure of the generators for symmetry transformations in the basis (v, ') is
given by the formula

a
L= Sy, +

_bT

b
d‘ ‘@7/5, (42)

recall that a,d obey the constraints (42).

Previously it was shown that all appropriate generators of type L in the basis (y",y') may
be of two types:

&

®y, A L= ® ;.

d2 2

The Majorana condition assumes that generators of type D are to have imaginary blocks m
and the generators of type A are to have real blocks. Because all generators are Hermitian, we have
the properties

d"=(d)") =-d"=d, a"=((a)") =a’ =a.
The two last relation contradict to (42), for this reason we conclude that for quantized massless
fields only the generators of type J provide us with symmetry transformation, exactly as in
massive case.
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Conclusion. In the present paper, the problem of describing the internal symmetry
transformations for quantized Dirac fields has been studied. We started with the matrix equation
(' ,0,+m)y =0, and introduced the concept of the internal symmetry. These symmetries should

preserve the form of the basic equation, which is equivalent to the commutation relation
[Q.I,]. =0. The relevant Lagrangian should be invariant under the internal symmetry

transformation. This requirement leads to the restriction Q*7Q =7, where 7 stands for the bilinear
form matrix. We impose one additional requirement on symmetry transformations, such
transformations should preserve the Majorana nature of the fields.

The situation for massless case is substantially different, T" 0, =0. The requirement of

invariance of this equation and corresponding Lagrangian leads to two alternative restrictions
[Q.,I,]1 =0 or [Q,I",], =0. The Lagrangian invariance with respect to internal symmetry

transformation for massless case coincide with that for massive case, Q" 7Q =17.

It is proved that in massive and massless cases the internal symmetry transformations are
determined by the same generators, which coincide with the generators established when studying
the classical fields.

The authors are grateful to Professor V.A. Pletyuchov for encouraging help and advice.
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